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Abstract Although the molecular mechanism and thermo-
dynamic profile of a wide variety of chemical agents have
been examined intensively in the past decades in terms of
specific recognition of their protein receptors, to date the
physicochemical nature of DNA–drug recognition and as-
sociation still remains largely unexplored. The present study
focused on understanding the structural basis, energetic
landscape, and biological implications underlying the bind-
ing of small-molecule ligands to their cognate or non-
cognate DNA receptors. First, a new method to capture the
structural features of DNA–drug complex architecture was
proposed and then used to correlate the extracted features
with binding affinity of the complexes. By employing this
method, a statistical regression-based predictor was devel-
oped to quantitatively evaluate the interaction potency of
drug compounds with DNA in a fast and reliable manner.
Subsequently, we use the predictor to examine the binding
behavior of a number of structure-available, affinity-known
DNA–drug complexes as well as a large pool of randomly
generated DNA decoys in complex with the same drugs. It
was found that (1) as compared with protein–DNA recog-
nition, small-molecule agents have relatively low specificity
in selecting their cognate DNA targets from the background
of numerous random decoys; (2) the abundance of A–T base

pairs in the DNA core motif exhibits a significant positive
correlation with the affinity of drug ligand binding to the
DNA receptor; and (3) high affinity seems not to be closely
related to high selectivity for a DNA-targeting drug, al-
though high-affinity drug entities have a greater possibility
of being ranked computationally as top binders. We hope
that this work will provide a preliminary insight into the
molecular origin of sequence-specific interactions in DNA–
drug recognition.
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Introduction

A significant fraction of therapeutic approaches currently
employed for modulation of gene function rely on the inter-
action of low molecular weight chemical agents with DNA
targets so as to alter gene expression and the biological syn-
thesis of proteins [1, 2]. Over the past decades, a wide variety
of DNA-targeting drugs have been developed for this purpose
to treat various diseases such as cancer, malaria, AIDS and
other viral, bacterial and fungal infections [3]. The molecular
design of sequence-selective DNA binding agents permits
recognition and targeting of this biopolymer, thereby creating
the possibility of gene-directed chemotherapies [4, 5]. How-
ever, it should be borne inmind that designing drug entities for
selective recognition of a specific DNA site amongst the
whole repertoire of the genome is hugely challenging as
compared with the design of drugs targeting proteins [6].

Traditionally, protein–drug binding is explained by either
Fischer’s lock and key theory or Koshland’s induced-fit
principle [7]. The extrapolation of such models to DNA–
drug complexes is not straightforward since, unlike
enzymes, DNA has no formal active sites. In addition, the
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chemical forces that govern the binding of drug ligands to
protein and to DNA receptors are not consistent; protein–
ligand complexes are stabilized by a variety of interactions
such as hydrophobic, electrostatics, hydrogen bonds, etc.,
whereas DNA–ligand complexes are clearly dominated by
electrostatic effects [8, 9]. Thus, the advancement of under-
standing sequence-specific DNA–drug recognition is funda-
mentally important for the rational design of improved new
and safe drugs as we move toward personalized medicine
[10]. In recent years, considerable efforts have been devoted
to exploring the molecular mechanisms underlying specific
DNA–drug recognition and its biological implications,
which are considered to stem from a number of exquisite
balances between diverse physicochemical factors, includ-
ing shape complementarity [11], enthalpy-entropy compen-
sations [12], electrostatic earnings and desolvation penalty
[13], as well as direct and indirect readouts [14]. In this
study, we aimed at a deeper understanding of the molecular
origin of sequence-specific interaction in DNA–drug recogni-
tion, attempting to answer the questions like: (1) how well do
drugs specifically interact with their cognate sites on DNA
helices? (2) How does base compositional bias influence
specific DNA–drug recognition? (3) Is enhancing affinity
equal to improving specificity for DNA–drug binding?

To elucidate these issues, we required a fast and reliable
DNA–drug affinity predictor in order to perform intensive
structural analysis and energetic examination of the binding
behavior of drug entities to their cognate DNA targets as
well as to vast noncognate counterparts. While a wide
number of protein–ligand binding analysis tools are avail-
able today [15], only very few methods have been exploited
over the past years to facilitate quantitative affinity predic-
tion for DNA–drug association [16–18]. Unfortunately,
most of these methods appear unsuitable for this study
because of either significant computational demands (i.e.,

the MD-based MM/PBSA analysis [19]) or their relatively
low accuracy (i.e., the empirical scoring function [20]).
Although some rigorous strategies to parse energetic com-
ponents involved in the interaction of DNA with small-
molecule compounds have been developed successfully,
these usually involve complicated theoretical processes
and/or consist of various energy decompositions that are
not feasible for high-throughput applications [21]. In this
respect, we herein propose a novel quantitative structure-
affinity relationship (QSAR) approach with which to corre-
late structural features with the energetic profile of drug
ligand binding to DNA receptors statistically, which could
be regarded as a good compromise between computational
accuracy and efficiency. Subsequently, the resultant predic-
tor was applied to analyze the target-binding selectivity of a
number of drug molecules in recognizing their cognate
DNA partners from a vast array of randomly generated
(noncognate) decoys. In the procedure, we also examined
the structural basis and energetic mechanism of the affinity-
specificity relationship associated with DNA–drug interac-
tions, in order to elicit straightforward guidelines for the
structure-based rational design of sequence-selective DNA-
targeting drugs.

Materials and methods

DNA–drug complex structure and affinity data set

Small-molecule drug ligands bound noncovalently to DNA
receptors can be categorized as one of three classical types:
minor groove binder, major groove binder, and intercalator,
of which the first is the most commonly found (Fig. 1) [22].
Here, we collected 48 minor groove binders in complex with
their cognate DNA receptors, along with experimentally

Fig. 1 An example of minor
groove binder: the crystal
structure of netropsin bound to
a decamer d(CGCAATTGCG)2
(PDB: 261D), where the
netropsin molecule is inlayed in
and extended along the minor
groove of the DNA double
helix, forming intensive
nonbonded interactions as
electrostatic attractions, and van
der Waals contacts, and
desolvation effects between
them
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measured binding free energies ΔGexp
o (collected from

references [12, 23–39]). The three-dimensional (3D) struc-
tures of these complexes were either determined by X-ray
crystallography at high resolution (<2.5 Å) or modeled by
rigorous theoretical protocols. Information on the 48 DNA–
drug complexes is tabulated in Table S1 in Supporting
Information, in which the last 30 complex structures were
modeled theoretically by Shaikh and Jayaram [40] and can
be retrieved from the PDB FTP site [41]. In addition, the
crystal structures of the remaining 18 complexes were trea-
ted as follows before use in subsequent analysis [40]: first,
crystallized ions and water molecules were removed from,
and hydrogen atoms added to, the complexes according to
their structural information and ionized state. Thereafter, the
systems were immersed into a 8 Å box of TIP3P waters to
perform, in turn, 500-step hydrogen minimization, 5,000-
step water minimization, 5,000-step all-atom minimization,
and finally, 5,000-step free minimization with the AMBER9
force field [42] and GAFF parameterization [43]. In the
minimization procedure, Na+ counterions were added to
neutralize the system. In this way, steric clashes and bond
distortions involved in the crude crystal structures would be
largely eliminated to achieve the nearest stable low-energy
conformations.

Development of a structure-based QSAR predictor

Although numerous QSAR models have been proposed to
predict the activity, toxicity and properties of various small-
molecule compounds such as drugs, toxicants and surfac-
tants, this widely used technique has only very limited

applications to biomacromolecules. Here, we employed
QSAR methodology to develop a quantitative predictor for
the fast evaluation and reliable analysis of the binding
affinity between DNA receptors and drug ligands based on
3D complex structure information (Fig. 2).

First, the heavy atoms contained in DNA and drug com-
pounds were categorized roughly into 12 types in terms of
chemical properties and hybridizion state [44], of which
only 8 types were associated with DNA atoms (Table 1).
According to the categorization scheme, at most 96 inter-
crossing terms between the 8 and 12 atom types of DNA and
drug, respectively, can be generated to cover all the atom
pairs involved in a DNA–drug complex. Subsequently, the
pseudo potential of each atom pair in the complex was
computed one-by-one using a distance-dependent
Gaussian-type function modified from the classical CoM-
SIA method [45] (vide post), and then added to the
corresponding one of the 96 intercrossing terms; the terms
associated with missing atom types were always in zero.

A modified version of Gaussian-type function Uij ¼
e�ar2ij was employed to describe the pseudo potential Uij

between atoms i and j, separated by distance rij, from DNA
and drug, respectively. The attenuation factor α controls the
sensitivity of Uij to rij and was set to 0.3 according to the
suggestion of Klebe et al. [45]. Unlike CoMSIA, here we
did not consider the actual values of physicochemical prop-
erties of atoms, because we believed that the intrinsic pecu-
liarity of the atoms were implicitly involved in their
categorization. In other words, atom pairs with different
characteristics would be separated into different terms and
thus be distinguished in regression. In this way, the

Fig. 2 The QSAR modeling procedure used to associate structural
features with binding affinity for 48 DNA–drug complexes. The pseu-
do potential profiles of complexes were encoded one-by-one into 96

(8×12) intercrossing terms based on complex 3D structures, which
were then correlated with experimentally measured binding affinity
ΔGexp

o using partial least squares (PLS) regression
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modeling and prediction were largely simplified, and the
exhaustive process traditionally used to pre-assign atomic
parameters for the investigated DNA–drug complexes (and
also the large number of decoy–drug complexes) was
omitted.

By using the procedure described above, each DNA–
drug complex can be generated with 96 descriptors param-
eterizing the structural properties and interaction behavior of
each complex. The generated descriptors for all the 48
complexes come together to define an independent variable
matrix X with size 48×96, which can be correlated statisti-
cally with a dependent variable vector y composed of 48
affinity values of these complexes by using the widely
applied partial least squares (PLS) technique [46]. The
obtained regression models were tested rigorously through
3-fold cross-validation, i.e., the 48 samples were randomly
partitioned equally into three subgroups, and each subgroup
was then used exactly once in a three-round testing proce-
dure as validation data to assess the quality of the PLS
model built upon other two subgroups.

In this study, PLS regression was implemented using the
ChemoAC toolbox [47] running in MatLab platform; we
modified this program in order to carry out variable
selections.

Generation of drug-bound DNA decoys

In order to examine drug selectivity in targeting its cognate
DNA receptor within the background of numerous noncog-
nate sites, we need first to obtain large quantities of adducts
of a drug molecule separately with vast DNA decoys in a
swift manner. Therefore, a protocol that well considers the
balance between accuracy and efficiency was introduced to
generate and optimize the structures of decoy–drug adducts.

The minimized cognate DNA–drug complex crystal/
model structure was then used as a template. The base pairs
of DNA in the template were mutated randomly via a script
executed within the 3DNA framework [48] to automatically
generate noncognate adducts of DNA decoys with the drug.
The complex structures were then optimized through the
AMBER9 force field [42] in consideration of implicit GB/
SA solvent effects [49], without any constraint and limited
to 1,000 steps. A similar protocol has previously been used

successfully to treat DNA–protein complexes, and hence we
believed that this implicit solvation model-based minimiza-
tion can be applied to DNA–drug systems as well. In fact,
the strategy described above is rather fast, and can generate
thousands of decoy–drug adducts from a template within
several hours. This method is also effective since re-
mutating several decoy–drug adducts back to their original
state appeared to match well with corresponding templates,
with small root-mean-square deviations (RMSD); for exam-
ple, RMSD = 0.56 Å for the DNA–netropsin system (Fig. 3)

Table 1 A coarse-grained cate-
gorization scheme of the atoms
contained in DNA and drug
molecules

aTypes associated with DNA
atoms

Atom type Description Atom type Description

C.3a sp3 carbon O.3a sp3 oxygen

C.12 sp1 and sp2 carbon O.2a sp2 oxygen

C.ar a Aromatic carbon O.ca Negatively charged oxygen

N.123a sp1, sp2, and sp3 nitrogen P.alla All phosphorus atoms

N.c Positively charged nitrogen S.all All sulfur atoms

N.ar a Aromatic nitrogen X.all All halogen atoms

Fig. 3 Re-mutating decoy–netropsin adduct back to its original state
(green) shows good superposition on corresponding template (red).
The root-mean-square deviations (RMSD) value between two struc-
tures is 0.56 Å, mostly arising from the two ends of the DNA
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of re-mutated structures superposed on templates, mostly
contributed from the two ends of DNA.

Results and discussion

QSAR modeling and affinity predictor

As mentioned above, at most 96 (8×12) intercrossing terms
can be generated for a DNA–drug complex. In fact, howev-
er, in most cases only a proportion of all terms associated
with the atom types that really exist in studied systems are
raised with actual values. According to our examination, 4
(O.c, P.all, S.all, and X.all, see Table 1) out of a total of 12
atom types are missing in currently studied drug molecules.
Thus, we finally obtained 64 (8×8, separately from DNA
and drug) valid intercrossing terms for each DNA–drug
complex, which were then used as structural descriptors in
subsequent QSAR modeling.

Based on the 48 complex samples, we conducted linear
correlation between the structural descriptors and experi-
mental affinity using PLS regression. The resultant QSAR
model, although acceptable, was not very satisfactory, since
it possessed a high performance in goodness-of-fit (coeffi-
cient of determination of fitting r2=0.875) but only moder-
ate predictability (coefficient of determination of 3-fold
cross-validation q2=0.540). As highlighted by Tropsha et
al. [50], a predictable QSAR model should have (1) a
relatively large q2 value (>0.5) and (2) a small difference
between r2 and q2 (r2−q2 close to or less than 0.2). It is
evident that the built QSAR model satisfied only criterion 1
but skipped over criterion 2. Therefore, we attempted to
further improve the model by performing variable selec-
tion—a sophisticated strategy that has been used widely in
the QSAR community to enhance statistical quality for
regression models [51].

Three variable selection methods, i.e., randomization
(RD) [52], stepwise regression (SR) [53], and genetic algo-
rithm (GA) [54], were adopted here. RD randomly creates
thousands of variable subsets, establishes PLS models on
these subsets, and selects the best from among these. SR
performs forward selection to introduce significant (and
simultaneously delete insignificant) variables one-by-one
in terms of their contributions to a PLS model until the
model’s performance achieves its maximum. GA uses an
evolutionary strategy to search variable space in a non-
numerical manner to obtain near-optimal solutions for PLS
variable combinations within an acceptable time-scale. The
statistics, as well as the scatters of predicted against exper-
imental affinity for different QSAR models are presented in
Table 2 and Fig. 4. As can be seen, while the resulting r2 is
related directly to the number of variables engaged in mod-
els, the predictive power q2 tells a different story, i.e., the

effective prediction appears to associate with fewer varia-
bles, just as the M3 (28) and M4 (37) in Table 2. In fact, it is
well known that too many variables can lead to overfitting
problems to a regression model, viz. a high fitting ability on
internal training samples but a low generalization capability
to external unseen entities. Hence, a predictive q2 should be
considered as a gold standard with which to measure the
quality of QSAR models. According to this criterion, M4
was finally selected to serve as the affinity predictor to
perform subsequent analysis, which, apparently, obeyed
the rule proposed by Tropsha et al. [50] (q2=0.624>0.5
and r2−q2=0.188<0.2).

Owing to the lack of availability of DNA–drug com-
plexes with both known structure and determined affinity,
our dataset involves significant redundancy across DNA-
binding drugs. Therefore, we adopted SMILES strings to
code drug molecules, and performed clustering on them
using the threshold of the Tanimoto coefficient, 0.7. The
Tanimoto coefficient is computed as the number of bits in
common divided by the total number of bits. The Tanimoto
coefficient can be expressed as: Tanimoto = BC/(B1 +
B2 − BC). A Tanimoto of 1 indicates an identical molecule,
while a Tanimoto of 0 will indicate that two molecules have
nothing in common. Consequently, the drug ligands clus-
tered into five groups. We found that the clustering result
reflects mainly the size of the drug molecules. For example,
bulky molecules such as Imidazole-Pyrrole Polyamide, Dis-
tamycin and Netropsin were clustered into one group, and
the smaller Propamidine and Berenil into another group. We
re-performed five-fold cross-validation on the five groups of
clustering and found no significant difference with that
performed previously with randomized three-fold cross-
validation. For example, the model M1 had a q2=0.540 with
randomized three-fold cross-validation; this value was
changed to 0.523 when performed with cluster-based five-
fold cross-validation. The results arising from cluster-based
five-fold cross-validation are also listed in Table 2 for com-
parison purposes.

Table 2 Statistics of different quantitative structure-affinity relation-
ship (QSAR) models

Model Variable
selectiona

Number of
variables

r2 b qrdm
2 c qclt

2 d

M1 – 64 0.875 0.540 0.523

M2 RD 46 0.789 0.556 0.530

M3 SR 28 0.750 0.593 0.581

M4 GA 37 0.812 0.624 0.594

aRD Randomization; SR stepwise regression; GA genetic algorithm
b Coefficient of determination of fitting
c Coefficient of determination of randomized 3-fold cross-validation
d Coefficient of determination of cluster-based 5-fold cross-validation
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Deeper analysis of affinity predictor M4

Here, we present a further examination of affinity predictor
M4 to explore its structure and performance in interpreting
and inferring the binding behavior of drug ligands, not only
to their cognate DNA receptors but also to random decoys.

First, we analyzed the variable importance in the projec-
tion (VIP) of PLS [55], which is a direct measure of the
relative contribution of GA-selected variables in M4 to
DNA–drug binding affinity. The PLS VIP values of the 37
selected variables (plus 27 unselected variables) reverted
into the 8×8 atom-type pairs between DNA and drug, and
are illustrated as a heat map (Fig. 5), in which the hot red
indicates a significant contribution of corresponding atom-
type pairs to binding, while the pure black denotes variables
of atom-type pairs not being selected by GA.

At a glance, it can be seen that the important pairs are
mostly those associated with polar and charged atom types
such as N.c, N.ar, O.2, O.c, P.all, etc., most of which locate
at the upper right corner of the heap map. In contrast, the
pairs involving nonpolar carbon atoms, such as C.3, C.12,
and C.ar, were either ignored by GA or made only a modest
contribution to binding, despite the fact that carbon is the
most abundant element in DNA and drug compounds. The
VIP heat map conveys clearly that polar and charged atoms
play a central role in DNA–drug binding, and confer both
stability and specificity to DNA–drug complex architecture

by defining key nonbonded types at the interacting interface.
In fact, the top five important atom-type pairs in M4 are all
formed by O, N, and P atoms, i.e., O.c–N.c, O.2–N.ar, O.3–

Fig. 4 Plots of calculated
affinity against experimental
values for the 48 DNA–drug
complexes with models M1,
M2, M3, and M4

Fig. 5 The variable importance in the projection (VIP) heat map of
variables in partial least squares(PLS) with variable selection by ge-
netic algorithm (GA) (M4); each variable represents a atom-type pair
between DNA and drug. Hot red Significant contribution of
corresponding atom-type pairs to binding, pure black variables of
atom-type pairs not being selected by GA. The top five important
atom-type pairs are highlighted (blue rim)
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N.c, N.ar–N.123, and P.all–N.c of DNA–drug (highlighted
by blue rims in Fig. 5). It is expected that three out of the top
five include charged atom types (i.e., O.c, N.c, and P.all),
indicating the importance of electrostatic effects in dominat-
ing DNA–drug interactions [8]. In addition, the fact that
most significant atom-type pairs include polar atoms implies
that hydrogen bonding may also be a common and impor-
tant phenomenon in DNA–drug binding. This is understand-
able considering that hydrogen bonding possesses a typical
directionality that provides the molecular basis of sequence-
specific DNA–drug recognition [56].

Second, we tested the capability of M4 in blind identifi-
cation of cognate DNA–drug complexes from the back-
ground of numerous decoy–drug adducts. The 18 X-ray
solved crystal structures of DNA–drug complexes were
utilized to perform the test; each of the complexes was
processed as follows: by using the protocol described in
Materials and methods, the DNA in minimized complex
structure was virtually mutated to 100 random decoys, fol-
lowed by addressing structure optimization on the decoy–
drug adducts. The binding affinities of the 100 noncognate
adducts were then predicted using M4. Subsequently, we
evaluated the relative (predicted) binding affinity of each
cognate DNA–drug complex to 100 corresponding decoy–
drug adducts, and the results obtained for the 18 samples are
shown in Fig. 6. It can be seen that nearly half (8, pink bars)
of the 18 samples were identified in the top 10 % highest
affinities, 7 (green bars) of 18 were in the top 20 %, and
remaining 3 (blue bars) in the top 50 %.

The test revealed some additional information about the
predictor M4: (1) M4 is capable of properly estimating the
binding affinity not only of cognate DNA–drug complexes
but also of noncognate decoy–drug adducts; and (2) M4 can,
from a statistical point of view, identify cognate complexes
from a background of noncognate adducts reliably. Al-
though the predictor M4 was preliminarily demonstrated to
be effective in analyzing the binding behavior of drugs to
both DNA targets and decoys, it is also worth noting that
there were some cognate complexes that were not ranked as
high-affinity binders as compared with corresponding de-
coy–drug adducts. The most typical of these is complex 10,

which is formed by pentamidine [1,3-bis(4-amidinophenox-
y )p ropane ] bound to t h e dodecanuc l eo t i d e d
(CGCGAATTCGCG)2 and possesses the lowest binding
affinity (ΔGexp

o=−7.0 kcal mol−1 in all 18 complexes.
The other two low-ranked samples are complexes 9 and
14; both of these are also the weak binders (ΔGexp

o=−8.2
and −8.0 kcal mol−1 respectively). The findings suggested
that either (1) our model appears to perform better on strong
DNA–drug interactions than on weak ones, or (2) the low-
affinity cognate complexes may actually not be the best
choice for drug molecules to select their DNA targets. We
discuss this point further in the next section.

Exploration of sequence-specific DNA–drug recognition

The selectivity of a drug molecule in sequence-specific
recognition of its cognate DNA target can be defined as its
capacity to pick up the target from the whole DNA reper-
toire it possibly sees in a cell. Here, we generated a large
number of random DNA decoys to represent this repertoire,
and calculated the differences in binding affinities of a drug
entity to a cognate DNA target and to these noncognate
decoys.

In order to gain more statistically significant conclusions,
we decided to conduct exhaustive analyses for a few repre-
sentative samples. Three cognate DNA–drug complexes,
separately possessing high, moderate, and low affinities as
well as distinct chemical structures of the drug molecules,
were selected to carry out the examination of sequence-
specific DNA–drug recognition, i.e., the drug ligands
netropsin, berenil analogue [2,5-bis[4-(2-amidino)-phenyl]
furan], and propamidine [1,3-bis(amidinophenoxy)propane]
complexed with DNA receptors d(CGCAATTGCG)2, d
(CGCGAATTCGCG)2, and d(CGCAAATTTGCG)2, re-
spectively. For each cognate complex, 3,000 random DNA
decoys bound with drug molecule were generated and the
binding affinities of these noncognate decoy–drug adducts
were then predicted using M4. The predicted affinity distri-
butions of these adducts as well as the corresponding cog-
nate complexes are shown in Fig. 7, which gives a
straightforward insight into drug selectivity in sequence-

Fig. 6 Predicted affinities of 18
drug molecules binding to their
cognate DNA targets relative to
the values of the same drugs
binding to 100 random decoys.
The predicted affinities of
cognate complexes ranked in
top 10 %, top 20 %, and top
50 % are shown in pink, green,
and blue, respectively
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specific recognition of cognate DNA target from among a
background of numerous noncognate decoys.

It can be seen from Fig. 7 that, although most noncognate
adducts were predicted to have lower affinities than those of
corresponding cognate complexes, there was also a substan-
tial fraction of competitive decoys that can bind drugs with
close or higher affinity as compared to cognate DNA targets.
In fact, the differences between the affinity values of three
cognate complexes and the averaged values of predicted
affinities of 3,000 noncognate adducts are only 1.96, 2.23,
and 2.17 kcal mol−1, respectively, which are incapable of
providing sufficient discrimination between the cognate and
noncognate DNA–drug interactions. Thus, the specificity in
DNA–drug recognition appears to be considerably lower
than that of DNA–protein interactions; the latter usually
undergo a significant decrease (3–10 kcal mol−1) in binding
affinity due to the slight change in native DNA sequence
pattern [57]. In addition, selectivity seems not to be closely
related to the affinity of drug ligands bound with DNA

receptors. In other words, high affinity does not equal high
specificity for a drug entity selecting its target. This is
anticipated because the chemical forces that confer the ma-
jority of binding affinity for a drug compound are mostly
those of nonspecific noncovalent interactions such as long-
range electrostatic effects and hydrophobic potentials,
which are not accurately coded by DNA sequence pattern.

Further, we surveyed the effect of base compositional
bias on DNA–drug binding affinity. Here, only the core
six residues of DNA that are in direct contact with drug
ligands were considered in the survey. The base bias was
quantified by the abundance of the base pair A–T in the core
six-residue motif, of which the quantities can be enumerated
as 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, and 6/6, separately represent-
ing the ratio of A–T number to the total number of six base
pairs in the motif. The scatter plots of the averaged affinity
of 3,000 decoy–drug adducts against the abundance of base
pair A–T in the core six-residue motif are shown in Fig. 8.
As seen, a good linear correlation between the affinity and

Fig. 7a–c Histogram distributions of the predicted binding affinitiesΔGcal
o (in 1 kcal mol−1 bins) of 3,000 randomly generated DNA decoys separately

in complex with three drug ligands. a Netropsin, b 2,5-bis[4-(2-amidino)-phenyl]furan, c 1,3-bis(amidinophenoxy)propane

Fig. 8a–c Scatters of averaged binding affinity ΔGcal
o against the

abundance of the base pair A–T in the core six-residue motif for
3,000 randomly generated DNA decoys separately in complex with

three drug ligands. a Netropsin, b 2,5-bis[4-(2-amidino)-phenyl]furan,
c 1,3-bis(amidinophenoxy)propane. Error bars 95 % confidence
intervals

1580 J Mol Model (2013) 19:1573–1582



A–T abundance emerged readily for the three investigated
systems, with significant Pearson’s correlation coefficients r
of −0.87, −0.91, and −0.76; the negative value of r indicates
a reverse relationship between the drug affinity and the A–T
abundance of DNA; that is to say, a DNA helix with high
A–T abundance is a promising candidate for drug ligands to
target. This is expected since the A–T base pair does not
introduce obvious steric hindrance to the DNA minor
groove, which is used to accommodate drug ligands of the
minor groove binder type, whereas G–C does [58]. There-
fore, most minor groove binders discovered to date have A/
T specificity. The noticeable dependence of drug affinity on
A–T abundance is a marked feature of minor groove binders
in selection of their favorable DNA fragments, which can be
adopted as a coarse-grained rule to empirically exclude
those DNA targeting candidates with low minor groove
binding preference.

Conclusions

Understanding the structural basis and energetic mechanism
of sequence-specific DNA–drug recognition is fundamen-
tally important for the rational design of high-potency, low-
toxicity and strong-selectivity DNA targeting agents against
cancer, viral infection and other diseases. In order to achieve
this goal, in the current study we attempted to evaluate the
difference between the binding affinities of drug ligands to
their cognate and noncognate DNA receptors. An efficient
and reliable QSAR predictor was developed to estimate
DNA–drug affinity based on complex 3D structure architec-
ture, which was also validated rigorously via both statistical
testing and the analysis of its biological implications. This
predictor was employed to examine the binding behavior
of a number of cognate DNA–drug complexes as well as
large quantities of randomly generated DNA decoys in
complex with the same drugs. By investigating the depen-
dence of drug affinity on DNA sequence pattern and by
comparing the interaction potencies of drug ligands with
cognate DNA targets and with numerous random decoys,
we found that DNA–drug recognition has lower sequence
specificity as compared to that DNA recognized by pro-
teins, and the specificity seems not to be closely related to
the affinity of DNA targeting drugs. In addition, a signif-
icant correlation between the affinity of minor groove
binders and the A–T abundance of DNA targets readily
emerged. These findings may have implications for the
physicochemical nature and molecular origin of sequence-
specific DNA–drug recognition.
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